Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data

نویسندگان

  • Laura Cornejo-Bueno
  • Lucas Cuadra
  • Silvia Jiménez-Fernández
  • Javier Acevedo-Rodríguez
  • Luis Prieto
  • Sancho Salcedo-Sanz
چکیده

Wind Power Ramp Events (WPREs) are large fluctuations of wind power in a short time interval, which lead to strong, undesirable variations in the electric power produced by a wind farm. Its accurate prediction is important in the effort of efficiently integrating wind energy in the electric system, without affecting considerably its stability, robustness and resilience. In this paper, we tackle the problem of predicting WPREs by applying Machine Learning (ML) regression techniques. Our approach consists of using variables from atmospheric reanalysis data as predictive inputs for the learning machine, which opens the possibility of hybridizing numerical-physical weather models with ML techniques for WPREs prediction in real systems. Specifically, we have explored the feasibility of a number of state-of-the-art ML regression techniques, such as support vector regression, artificial neural networks (multi-layer perceptrons and extreme learning machines) and Gaussian processes to solve the problem. Furthermore, the ERA-Interim reanalysis from the European Center for Medium-Range Weather Forecasts is the one used in this paper because of its accuracy and high resolution (in both spatial and temporal domains). Aiming at validating the feasibility of our predicting approach, we have carried out an extensive experimental work using real data from three wind farms in Spain, discussing the performance of the different ML regression tested in this wind power ramp event prediction problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wind Power Ramps Driven by Windstorms and Cyclones

The increase in the wind power predictability assumes a very important role for secure power system operation at minimum costs, especially in situations with severe changes in wind power production. In order to improve the forecast of such events, also known as “wind power ramp events”, the underlying role of some severe meteorological phenomena in triggering wind power ramps must be clearly un...

متن کامل

Wind Power Ramp Event Prediction with Support Vector Machines

Wind energy is playing an important part for ecologically friendly power supply. Important aspects for the integration of wind power into the grid are sudden and large changes known as wind power ramp events. In this work, we treat the wind power ramp event detection problem as classification problem, which we solve with support vector machines. Wind power features from neighbored turbines are ...

متن کامل

Prediction of Wind Farm Power Ramp Rates: A Data-Mining Approach

In this paper, multivariate time series models were built to predict the power ramp rates of a wind farm. The power changes were predicted at 10 min intervals. Multivariate time series models were built with data-mining algorithms. Five different data-mining algorithms were tested using data collected at a wind farm. The support vector machine regression algorithm performed best out of the five...

متن کامل

Wind Power Prediction with Machine Learning

Better predictionmodels for the upcoming supply of renewable energy are important to decrease the need of controlling energy provided by conventional power plants. Especially for successful power grid integration of the highly volatile wind power production, a reliable forecast is crucial. In this chapter, we focus on shortterm wind power prediction and employ data from the National Renewable E...

متن کامل

Predicting Ramp Events with a Stream-Based HMM Framework

The motivation for this work is the study and prediction of wind ramp events occurring in a large-scale wind farm located in the US Midwest. In this paper we introduce the SHREA framework, a stream-based model that continuously learns a discrete HMM model from wind power and wind speed measurements. We use a supervised learning algorithm to learn HMM parameters from discretized data, where ramp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017